
December 1, 2012

Asymptotically self-similar solutions to curvature

flow equations with prescribed contact angle

Graduate School of Mathematical Sciences, University of Tokyo

Nao Hamamuki



1 Introduction
Evaporation-condensation model

[Mullins ’57] William W. Mullins (1927–2001), Materials Scientist.
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x
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x

t = 0 t > 0gas

grain boundary (fixed) “thermal groove”

crystal

Surface diffusion model is also proposed in [Mullins ’57].

(: 4th order eq.)

∗ Mg & high air pressure  evaporation-condensation.

Au & low air pressure  surface diffusion.

Mullins
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Equation and its derivation

Γt = {(x, u(x, t)) ∈ R2 | x >= 0, t >= 0}: surface (curve).

Vn: upward normal velocity. k: upward curvature.

O
x

surface tensions

grain boundary tension

Γt, u(x, t)

Vn

angle≡const.

Generalized curvature flow equation: Vn = 1− e−k on Γt, i.e.,

ut√
1 + u2

x

= 1− e−k with k =
uxx√
1 + u2

x

3 .

Boundary condition: ux(0, t) ≡ β > 0 by equilibrium of tensions.
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Derivation.

• Upward normal velocity Vn.

Vn = (condensation)− (evaporation)

= Ω0θc − Ω0θe

= Ω0 · C1(p0 − p). (C1 > 0) (∗1)

O
x

unit area

height, Ω0θc

condensation

∗ Here Ω0: molecular volume,

θc (θe): number of impinging (emitted) atoms per unit time and unit area,

p0 (p): vapor pressure in the atmosphere (in equilibrium with the surface).

• Gibbs-Thompson formula: log
p

p0
= −C2k (C2 > 0). (∗2)

(k: upward curvature)

(∗1) & (∗2) =⇒ Vn = Ω0C1p0
(
1− e−C2k

)
.
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Approximations by Mullins

u(x, 0) ≡ 0, ux(0, t) ≡ β ≪ 1.

ut√
1 + u2

x

= 1− e−k 1−e−k≈k99K vt =
vxx

1 + v2x

vx≈099K wt = wxx

generalized curvature flow eq. curvature flow eq. for graph heat eq.

Solving the heat equation, Mullins concludes the groove profile is

O
w(x, t) x

w(x, 0) ≡ 0

wx(0, t) ≡ β

d

β

w(x, t) = −2β
√
t · ierfc

(
x

2
√
t

)
.

In particular, the depth at the origin is

d := −w(0, t) = 2β

√
t

π
≈ 1.13β

√
t.

∗ Here ierfc(x) is the integral error function:

ierfc(x) =

∫ ∞

x

erfc(z)dz, erfc(x) =
2√
π

∫ ∞

x

e−z2dz.
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Goal

• Justification of Mullins’ two approximations.

ut√
1 + u2

x

= 1− e−k 1−e−k≈k99K vt =
vxx

1 + v2x

vx≈099K wt = wxx

Important remark. v & w are self-similar, i.e.,

v(x, t) =
√
tV

(
x√
t

)
, w(x, t) =

√
tW

(
x√
t

)
.

(V,W : profile functions.)

Results. (1) u ≈ v? ⋆ u is asymptotically self-similar, i.e.,

1√
t
u(
√
tx, t)

t→∞−→ V (x).

(2) v ≈ w? ⋆ V (0) = W (0) +O(β1+2) as β → 0. (Two depths)
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Related work

ut√
1 + u2

x

= 1− e−k 1−e−k≈k99K vt =
vxx

1 + v2x

vx≈099K wt = wxx

(1) (2) (3)

• [Broadbridge ’89] Exact solvability of (2) on {x >= 0} × {t >= 0} with

v(x, 0) ≡ 0, vx(0, t) ≡ β.

• [Ogasawara ’03 (J. Phys. Soc. Jpn.)] Generalized model under a

temperature gradient. Existence of stationary solutions.

• [Alber-Zhu ’07] Solvability of (2) on {a <= x <= b} × (0,∞) and

asymptotics. Weak, strong and classical solutions.

• [Nara-Taniguchi ’07] Let v and w be, resp., solutions to (2) and (3)

in R× (0,∞) with the same initial data. Then

supR |v(·, t)− w(·, t)| = O(1/
√
t) as t → ∞.

∗ A similar convergence result does not hold in our case.

sup[0,∞) |v(·, t)− w(·, t)| =
√
t sup[0,∞) |V (·)−W (·)| t→∞−→ ∞

for v(x, t) =
√
tV (x/

√
t) and w(x, t) =

√
tW (x/

√
t) such that v ̸≡ w.

6



2 Neumann boundary problems

Let F : Rn × Sn → R be continuous & degenerate elliptic.

(NP)


ut(x, t) = F (∇xu(x, t),∇2

xu(x, t)) in {x1 > 0} × (0,∞),

u(x, 0) = u0(x) ∈ BUC on {x1 >= 0},
ux1(x, t) = β > 0 on {x1 = 0} × (0,∞).

Theorem. (NP)=(NP; F, u0) admits a unique viscosity

solution which is bounded on {x1 >= 0} × [0, ∀T ).

∗ The boundary condition is interpreted as the viscosity sense.

cf. (Neumann problems and viscosity sol.)

• [Lions ’85] pioneer. bounded

• [Barles ’99], [Ishii-Sato ’04] general singular 2nd order eq.

• [Sato ’96] half space, capillary boundary condition: ux1
− k|∇u| = 0.

}domain
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3 Asymptotic behavior

ut(x, t) = F (∇xu(x, t),∇2
xu(x, t))

Mullins’ case. (n = 1)

GM (p,X) =
√
1 + p2(1− e−X/

√
1+p2

3

), FM (p,X) =
X

1 + p2
.

Definition (Homogeneity). F,G : Rn × Sn → R.

• F : homogeneous (hom.)
def.⇐⇒ λF (p,X/λ) = F (p,X), ∀λ > 0.

• G: asymptotically homogeneous (a-hom.)
def.⇐⇒ ∃F̃ : hom., λG(p,X/λ)

λ→∞−→ F̃ (p,X) loc. unif. in Rn × Sn.

∗ GM is a-hom. with the limit FM .

⋆ Generalized Mullins’ 1st approx.
G ≈ F
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Theorem (Asymptotic convergence).

Assume G is a-hom. with the limit F .

Let u solve (NP; G, u0), v solve (NP; F, 0) (self-similar). Then

u(λ)(x, t) :=
1

λ
u(λx, λ2t)

λ→∞−→ v(x, t)

locally uniformly on {x1 >= 0} × [0,∞).

Remark. The limit is common to all initial data.

O
x

O

u0 ∈ BUC

xt = 0 t > 0

1√
t
u(
√
tx, t)

t→∞−→ V (x)

(V is the profile function of v.)
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Proof. (u solves (NP; G,u0), v solves (NP; F ,0).)

1.

⋆ u(λ) is a solution of (NP; λG(p,X/λ)︸ ︷︷ ︸
→F

, u0(λx)/λ︸ ︷︷ ︸
→0

).

Thus u(λ) → v as λ → ∞ if the limit of u(λ) exists.

We employ the viscosity solution theory to show u(λ) → v.

Relaxed limits:{
u := lim sup∗λ→∞ u(λ) is a subsol. of (NP; F, 0),

u := lim inf∗λ→∞ u(λ) is a supersol. of (NP; F, 0).

These limits exist if
:::::::
{u(λ)}λ ::

is
:::::::
locally

::::::::::
uniformly

:::::::::
bounded. Then

u >= u by definition, u <= u by comparison principle.

Thus u = u = v, which also implies the locally uniform convergence.
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2. We construct barriers Φ± such that

Φ− <= u <= Φ+ & {Φ±
(λ)}λ are locally bounded.

Φ− We define Φ−(x, t) := −C + w(x1, t)− g(t), where C ≫ 1, w is a

solution of the heat equation and

g′(t) = sup
|θ|,|σ|<=1

∣∣∣∣G(θβe1, σ√
t
I1,1

)∣∣∣∣ (t > 1).

• (A) Φ− is a subsolution. (=⇒ Φ− <= u.)

Since wt <= 0, 0 <= wx1
<= β and −1/

√
t <= wx1x1

<= 0, we see

g′(t) >= −G((wx1)e1, (wx1x1)I1,1) + wt.

• (B) g(t) = O(
√
t) as t → ∞. (=⇒ {Φ−

(λ)}λ is locally bounded.)

If G is hom., g′(t) = (const.)/
√
t. Thus g(t) = O(

√
t). General cases:

√
tg′(t) <= sup

∣∣∣∣√tG

(
· , ·√

t

)
− F

∣∣∣∣︸ ︷︷ ︸
→0 (t→∞)

+sup |F |︸ ︷︷ ︸
=const.

<= const. �
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Remark. If G is hom., then

u(λ)
λ→∞−→ v ����XXXXlocally uniformly on Ω× [0,∞).

(u solves (NP; G ≡ F, u0), v solves (NP; F, 0).)

(∵) Contraction property:

u01, u02 ∈ BUC (Ω), two initial data,

u1: sol. of (NP; F, u01) & u2: sol. of (NP; F, u02).

=⇒ ∥u1 − u2∥L∞(Ω×[0,∞))
<= ∥u01 − u02∥L∞(Ω).

Letting (u1, u01) = (u(λ), u0(λx)/λ) and (u2, u02) = (v, 0), we see

∥u(λ) − v∥L∞ <= ∥u0(λx)/λ− 0∥L∞ =
1

λ
∥u0∥L∞

λ→∞−→ 0.
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Asymptotics of solutions to curvature flow type eq.

Neumann type conditions.

• [Huisken ’89] Convergence to a constant, zero Neumann.

• [Altschuler-Wu ’93] 1-dim, quasilinear, non-zero Neumann.

• [Altschuler-Wu ’94] 2-dim, curvature flow, non-zero Neumann.

• [Ishimura ’95] Opening angle: ux(−∞) = −K2, ux(∞) = K1.

• [Deckelnick-Elliott-Richardson ’97] 1-dim half-space, Driving force.

• [Kohsaka ’01], [Chang-Guo-Kohsaka ’03] Free boundary, quasilinear.

Others.

• [Ecker-Huisken ’89] Entire graphs.

• [Ishii-Pires-Souganidis ’99] Level set.

• [Chen-Guo ’07], [Schnürer-Schulze ’07] Triple junction.
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4 Depth of the groove

Let n = 1. The profile function V satisfies

(ODE)


V (ξ)− ξV ′(ξ) = a(V ′(ξ))V ′′(ξ) in (0,∞),

V ′(0) = β > 0,

limξ→∞ V (ξ) = 0,

where a(p) := −2F (p,−1). (F is homogeneous.) We also consider

(LODE)


W (ξ)− ξW ′(ξ) = a(0)W ′′(ξ) in (0,∞),

W ′(0) = β > 0,

limξ→∞ W (ξ) = 0.

V (ξ) ξO

W (ξ)

d(β)

L(β) = β

√
2a(0)

π

Set d(β) := −V (0) and L(β) := −W (0).

⋆ Generalized Mullins’ 2nd approx.

a(V ′(ξ)) ≈ a(0)
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Numerical result. Mullins’ case, i.e., a(p) :=
2

1 + p2
.

vt =
vxx

1 + v2x

depth−→ d(β) = −v(0, 1), wt = wxx
depth−→ L(β) = −w(0, 1).

[Yamazaki, ’11, graduation research]

◃ Is L(β) a linear approximation of d(β) at β = 0?

◃ d(β) <= L(β)? Is d(β) increasing, concave?

◃ Does d(β) go to +∞?

L(β) =
2β√
π

d(β)

−→ β
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Theorem (Depth of the groove).

Assume 0 <= a(p) <= a(0) (∀p >= 0). Then

(1) 0 <=
L(β)− d(β)

β
<=

∃C

(
a(0)−min

[0,β]
a

)
.

We also have

(2) d is nondecreasing in (0,∞).

(3) λd(β) <= d(λβ) (∀λ ∈ [0, 1]) if a is nonincreasing.

(4) lim
β→∞

d(β) = +∞ if a(p) >=
c

1 + p2
(∀p ≫ 1).

Mullins’ case. a(p) = 2/(1 + p2).

a(0)−min
[0,β]

a = 2− 2

1 + β2
=

2β2

1 + β2
= O(β2) as β → 0.

O

Depth

β

↗ +∞
(2) (4)

(1) o(β)

(3) concave

d(β)

L(β)
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Proof. Comparison principle.

(1) {L(β)− d(β)}/β <= C
(
a(0)−min[0,β] a

)
. We claim

d(β) >= β

√
2min[0,β] a

π
. (#)

Take β0 > 0 such that a(β0) = min[0,β] a (> 0). Let U solve

(LODE) U − ξU ′ = a(β0)U
′′ & B.C.

Then, since 0 <= U ′ <= β (=⇒ a(U ′) >= a(β0)) and U ′′ <= 0, we see

U − ξU ′ = a(β0)U
′′ >= a(U ′)U ′′,

which implies U is a supersol. of (ODE). Thus V (ξ) <= U(ξ) by the

comparison principle, and putting ξ = 0 yields (#). By (#)

L(β)− d(β)

β
<=

√
2a(0)

π
−
√

2a(β0)

π
=

√
2

π
× a(0)− a(β0)√

a(0) +����:√
a(β0)

. �
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5 Surface diffusion equation

ut = −∂x

[
1√

1 + u2
x

∂x

(
uxx√
1 + u2

x

3

)]
in {x > 0} × (0,∞), (1)

u(x, 0) ≡ 0 on {x >= 0},
ux(0, t) = β > 0 in (0,∞),

∂x

(
uxx√
1 + u2

x

3

)∣∣∣∣∣
x=0

= 0 in (0,∞). (2)

(1) ⇐⇒ Vn = −kss, (2) No flux condition.

⋆ Comparison principle (maximum principle) does not hold.

∗
(((((((((((hhhhhhhhhhh
Viscosity solution theory (n-th order, n >= 3)

Linearization. ux ≈ 0. (1) yt = −yxxxx, (2) yxxx(0, t) = 0.

[Martin ’09] Exact solution to the linearized problem.
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