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1 Introduction
Evaporation-condensation model

[Mullins ’57] William W. Mullins (1927-2001), Materials Scientist.
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Surface diffusion model is also proposed in [Mullins ’57]. L

(: 4th order eq.)

x Mg & high air pressure ~~ evaporation-condensation.

Au & low air pressure ~~ surface diffusion.

Mullins
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Equation and its derivation

Iy = {(z,u(z,t)) e R* | x 2 0,t = 0}: surface (curve).
V,.: upward normal velocity. k: upward curvature.

\ 5

Ft,’U,(CU,t)

surface tensions A _angleECOIlSt.

grain boundary tension

k

Generalized curvature flow equation: V,, =1 — e " on I}, i.e.,

— 1 —eF| with k= — 222

Uy
V14 Vita2

Boundary condition: ux((), If) = 3| > 0 by equilibrium of tensions.
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Derivation. A condensation

\ 3

e Upward normal velocity V,,. 0 \\

V., = (condensation) — (evaporation) unit area

— 0. — Q0.
= Qo - Ci(po —p). (C1>0) (*1)

height, QOHC

x Here {)g: molecular volume,

0. (0.): number of impinging (emitted) atoms per unit time and unit area,

po (p): vapor pressure in the atmosphere (in equilibrium with the surface).

e Gibbs-Thompson formula: |log P —Cok| (Cy > 0). (%2)

Po

(k: upward curvature)
(*1) & (*2) — V,, = Q()Clp() (1 — G_CQk).
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Approximations by Mullins

u(z,0) =0, u,(0,1) = K 1.

2:1—6 -—3 vt =g 5| 7 | Wt = Wao
v 1+ uz + vz
generalized curvature flow eq. curvature flow eq. for graph heat eq.

Solving the heat equation, Mullins concludes the groove profile is

pw(z,t)
w(zx,t) = —28/t - ierfc <i> . OA

| 5

2\t
In particular, the depth at the origin is d

t
d:= —w(0,t) = 281/ — ~ 1.138V%. !
Tr .
5

x Here ierfc(x) is the integral error function:

ierfc(x):/ erfc(z)dz, erfc(x) 2/ e~ dz.
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Goal

e Justification of Mullins’ two approximations.

> —1—e€ ——> VUt — 5 -=2 Wt = Wey
\/ 1 —|— ’LLa3 1 _I_ va:

Important remark. v & w are self-similar, i.e.,

v(w,t) = VIV (%) w(z,t) = VIW (\if)
(V,W: profile functions.)

Results. (1) u =~ v? x u is asymptotically self-similar, i.e.,

1 t— 00
%u(\/%x,t) — V(z).

(2) v =~ w? x V(0) = W(0) + O(B8**2) as 8 — 0. (Two depths)
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Related work
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e [Broadbridge ’89] Exact solvability of (2) on {x = 0} x {t = 0} with
v(z,0) =0, v,(0,%) = 5.

e |Ogasawara 03 (J. Phys. Soc. Jpn.)] Generalized model under a
temperature gradient. Existence of stationary solutions.

e [Alber-Zhu ’07] Solvability of (2) on {a < x < b} x (0,00) and
asymptotics. Weak, strong and classical solutions.

e [Nara-Taniguchi 07| Let v and w be, resp., solutions to (2) and (3)
in R x (0,00) with the same initial data. Then
supg |v(-,t) —w(-,t)| = O(1/v/t) as t — oo.
* A similar convergence result does not hold in our case.
SUP[0,00) [0(++ ) — w(-, 1) = VEsuppg ooy [V (-) = W ()] =3 oo

for v(z,t) = vtV (z/v/t) and w(z,t) z VW (z//t) such that v # w.



2 Neumann boundary problems

Let F': R" x S™ — R be continuous & degenerate elliptic.

(w(z,t) = F(Vyu(z,t), Viu(z,t)) in {z1 >0} x (0, 00),
(NP) < u(x,0) = ug(x) € BUC on {x; = 0},
Uz, (2,1) = B> 0 on {1 =0} x (0, 00).

Theorem. (NP)=(NP; F,up) admits a unique viscosity
solution which is bounded on {x; = 0} x [0,VT).

x The boundary condition is interpreted as the viscosity sense.

cf. (Neumann problems and viscosity sol.)

domain

Lions ’85] pioneer. }bounded
Barles 99|, |Ishii-Sato '04] general singular 2nd order eq.

Sato ’96| half space, capillary boundary condition: u,, — k|Vu| = 0.
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3 Asymptotic behavior

ui(x,t) = F(Vyu(z,t), Vaiu(z,t))

Mullins’ case. (n =1)

Crr(p. X) = VI P21 — e XV ) Fy(p, X) = —>

14+ p2

Definition (Homogeneity). F,G:R" x S” — R.
e F: homogeneous (hom.)
&L NF(p, X/\) = F(p, X), YA > 0.

e (: asymptotically homogeneous (a-hom.)
£ 3F: hom., AG(p, X/)\) =3’ F(p, X) loc. unif. in R™ x S™.

* (Gps 1s a-hom. with the limit F,.

* (Generalized Mullins’ 1st approx.
G~F
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Theorem (Asymptotic convergence).
Assume G is a-hom. with the limit F.
Let u solve (NP; G,ugp), v solve (NP; F,0) (self-similar). Then

1 %
U (2, 1) = Xu()\x,)\zt) g v(x,t)

locally uniformly on {x; = 0} x [0, c0).

Remark. The limit is common to all initial data.

O

(V' is the profile function of v.)
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Proof. (u solves (NP; G,ug), v solves (NP; F,0).)
1.

* Uy is a solution of (NP; \AG(p, X/)xz, ug(Ax)/N).

—F —0
Thus uy) — v as A — oo if the limit of u(y) exists.

We employ the viscosity solution theory to show uy) — v.

Relaxed limits:

|

These limits exist if {u is locally uniformly bounded. Then

u = u| by definition, |uw < u| by comparison principle.

= <l

= limsupy_,,, u(n) is a subsol. of (NP; F,0),
=1

iminf,yx_o u(y) s a supersol. of (NP; F\0).

Thus w = u = v, which also implies the locally uniform convergence.
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2. We construct barriers ®* such that
P~ <uLdT & {CID(iM})\ are locally bounded.

o~ | We define &~ (x,t) := —C' + w(x1,t) — g(t), where C' > 1, w is a
solution of the heat equation and

G (9561, %11’1> | (t > 1)

e [(A) &~ is a subsolution.| (= &~ < u.)
Since w; £ 0, 0 < w,, < B and —1/vVt < w0, <0, we see
g/(t) = _G((wxl)elﬂ (wﬂﬁlaﬁl)]l,l) + Wy.

e|(B) g(t) = O(v/t) as t — oo.| (= {<I>(_>\)}>\ is locally bounded.)
If G is hom., ¢’(t) = (const.)/+/t. Thus g(t) = O(v/t). General cases:

Vtg'(t) < sup ‘\/EG ( ,;> — F|+sup|F| < const. [
Vi ——
~ ~~ - =const.
—0 (t—00) 11

g'(t)= sup
0],|o|<1




Remark. If G is hom., then

U () 2y Toeadty uniformly on € x [0, oo).

(u solves (NP; G = F,ug), v solves (NP; F.,0).)

(") Contraction property:

uo1, uoz € BUC(S?), two initial data,
uy: sol. of (NP; F,ug1) & usg: sol. of (NP; Fugs).

= |lur — w2l Lo @x[0,00)) = 101 — vo2| oo (03)-
Letting (u1,u01) = (u(x), uo(Az)/A) and (u2,up2) = (v,0), we see
1 A— 00

luey = vllzee = Jluo(Az)/A = Off o = Sluollzee "—0.
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Asymptotics of solutions to curvature flow type eq.

Neumann type conditions.

Huisken ’'89] Convergence to a constant, zero Neumann.
Altschuler-Wu 93| 1-dim, quasilinear, non-zero Neumann.
Altschuler-Wu ’94| 2-dim, curvature flow, non-zero Neumann.
Ishimura '95] Opening angle: u,(—oc0) = —Ks, u,(o0) = Kj.
Deckelnick-Elliott-Richardson '97] 1-dim half-space, Driving force.

Kohsaka ’01], [Chang-Guo-Kohsaka 03] Free boundary, quasilinear.

Others.

Fcker-Huisken ’89| Entire graphs.
Ishii-Pires-Souganidis 99| Level set.

Chen-Guo ’07], |[Schniirer-Schulze ’07| Triple junction.
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4 Depth of the groove

Let n = 1. The profile function V satisfies

(ODE) {v7/(0) =8 > 0.
\hmf—mo V(f) — O

where a(p) := —2F(p, —1). (F is homogeneous.

W(E) — EW'(€) = a(O)W
(LODE) { w'(0) = 8 > 0,
limg_mo W(f) = 0.
Set d(8) := —V(0) and L(B) := —W(0).

* Generalized Mullins’ 2nd approx.

a(V'(£)) ~ a(0)

14

V(&) —€eV'(€) = a(V'(E))V"(€)

)
"(€)

A

in (0, 00),

We also consider

in (0, 00),

1




2
Numerical result. Mullins’ case, i.e., a(p) :

Uy = 1vm 5 epih d(B) = —v(0,1), [w; = Wey epih L(B) = —w(0,1).
T Uz
5 20
L(g) = 2=
| 6= 2
) (1) DEERHED (o)
) — (2) DHEIZEB (-a)
| 4(5)
0 1 —_ 5

Yamazaki, 11, graduation research]

> Is L(f) a linear approximation of d(3) at § = 07
> d(B) < L(B)? Is d(B) increasing, concave?
> Does d(8) go to +oo?
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Theorem (Depth of the groove).
Assume 0 < a(p) < a(0) (Vp = 0). Then

L(B) —d(B) _ - -
(1) 10 < 5 <-°C (a(()) — I[gl,lﬁI]la

We also have

)

d(f)

- (3) concave

>

(2) d is nondecreasing in (0, 00). "".O (1) o(3) 5
(3) AMd(B) < d(AB) (VA € ]0,1]) if a is nonincreasing.
c
. _ . > |
(4) 511—%0 d(B) = +o0 if a(p) = T (Vp>1)
Mullins’ case. a(p) = 2/(1 + p?).
L 2 2B
a(O)—][falﬁr]la—Q— T2 1 =0(p*) as B — 0.




Proof. Comparison principle.
(1) {L(B) —d(B)}/B < C (a(0) — ming g a). We claim

2 min
d(B) = 6\/ A7) (#)

T

Take By > 0 such that a(8p) = minj g a (> 0). Let U solve
(LODE) U —¢U" =a(B)U" & B.C.
Then, since 0 S U’ £ 8 (= a(U’) 2 a(fy)) and U"” < 0, we see
U—&U =a(By)U" = a(UHU",

which implies U is a supersol. of (ODE). Thus V(§) < U(§) by the
comparison principle, and putting & = 0 yields (#). By (#)

L e,




5 Surface diffusion equation

U = —0y ! Oy ( o 3> in {x > 0} x (0,00), (1)

u(x,0) = O_ on {z = 0},
U (0,t) =5 >0 in (0,00),

a@( s 3> =0 in (0, 00). (2)

x=0

(1) <= V,, = —kss, (2) No flux condition.

x Comparison principle (maximum principle) does not hold.

* w (n-th order, n = 3)

Linearization. u, ~0. (1)~ ¥ = —Yezzz, (2) ~ Yzzz(0,1) = 0.

[Martin ’09] Exact solution to the linearized problem.
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