December 1, 2012

Asymptotically self-similar solutions to curvature flow equations with prescribed contact angle

Graduate School of Mathematical Sciences, University of Tokyo
Nao Hamamuki

1 Introduction

Evaporation-condensation model

[Mullins '57] William W. Mullins (1927-2001), Materials Scientist.

Surface diffusion model is also proposed in [Mullins '57].
(: 4th order eq.)

* Mg \& high air pressure \rightsquigarrow evaporation-condensation.

Au \& low air pressure \rightsquigarrow surface diffusion.

Mullins

Equation and its derivation

$\Gamma_{t}=\left\{(x, u(x, t)) \in \mathbf{R}^{2} \mid x \geqq 0, t \geqq 0\right\}$: surface (curve).
V_{n} : upward normal velocity. k : upward curvature.

Generalized curvature flow equation: $V_{n}=1-e^{-k}$ on Γ_{t}, i.e.,

$$
\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}=1-e^{-k} \quad \text { with } \quad k=\frac{u_{x x}}{{\sqrt{1+u_{x}^{2}}}^{3}}
$$

Boundary condition: $\frac{u_{x}(0, t) \equiv \beta}{2}>0$ by equilibrium of tensions.

Derivation.

- Upward normal velocity V_{n}.

$$
\begin{align*}
V_{n} & =(\text { condensation })-(\text { evaporation }) \\
& =\Omega_{0} \theta_{c}-\Omega_{0} \theta_{e} \\
& =\Omega_{0} \cdot C_{1}\left(p_{0}-p\right) . \quad\left(C_{1}>0\right) \tag{*1}
\end{align*}
$$

* Here Ω_{0} : molecular volume,
$\theta_{c}\left(\theta_{e}\right)$: number of impinging (emitted) atoms per unit time and unit area,
$p_{0}(p)$: vapor pressure in the atmosphere (in equilibrium with the surface).
- Gibbs-Thompson formula: $\log \frac{p}{p_{0}}=-C_{2} k \underset{(}{\left(C_{2}>0\right) .} \quad(* 2)$

$$
(* 1) \&(* 2) \Longrightarrow V_{n}=\Omega_{0} C_{1} p_{0}\left(1-e^{-C_{2} k}\right)
$$

Approximations by Mullins

$u(x, 0) \equiv 0, u_{x}(0, t) \equiv \beta \ll 1$.

$$
\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}=1-e^{-k} \underset{\rightarrow-\rightarrow}{\substack{1-e^{-k} \approx k} v_{t}=\frac{v_{x x}}{1+v_{x}^{2}} \xrightarrow[\rightarrow \rightarrow \rightarrow]{v_{x} \approx 0} w_{t}=w_{x x}}
$$

generalized curvature flow eq.
curvature flow eq. for graph heat eq.
Solving the heat equation, Mullins concludes the groove profile is

$$
w(x, t)=-2 \beta \sqrt{t} \cdot \operatorname{ierfc}\left(\frac{x}{2 \sqrt{t}}\right)
$$

In particular, the depth at the origin is

$$
d:=-w(0, t)=2 \beta \sqrt{\frac{t}{\pi}} \approx 1.13 \beta \sqrt{t}
$$

* Here $\operatorname{ierfc}(x)$ is the integral error function:

$$
\operatorname{ierfc}(x)=\int_{x}^{\infty} \operatorname{erfc}(z) d z, \quad \operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-z^{2}} d z
$$

Goal

- Justification of Mullins' two approximations.

Important remark. $\quad v \& w$ are self-similar, i.e.,

$$
v(x, t)=\sqrt{t} V\left(\frac{x}{\sqrt{t}}\right), \quad w(x, t)=\sqrt{t} W\left(\frac{x}{\sqrt{t}}\right) .
$$

(V, W : profile functions.)

Results. (1) $u \approx v ? \star u$ is asymptotically self-similar, i.e.,

$$
\frac{1}{\sqrt{t}} u(\sqrt{t} x, t) \xrightarrow{t \rightarrow \infty} V(x) .
$$

(2) $v \approx w ? \star V(0)=W(0)+O\left(\beta^{1+2}\right)$ as $\beta \rightarrow 0$. (Two depths)

Related work

$$
\begin{equation*}
\frac{u_{t}}{\sqrt{1+u_{x}^{2}}}=1-e^{-k} \underset{(1)}{\substack{1-e^{-k} \\-\rightarrow}} \operatorname{vin}_{t} v_{t}=\frac{v_{x x}}{1+v_{x}^{2}} \underset{(2)}{v_{x \rightarrow-} \approx 0} w_{t}=w_{x x} \tag{3}
\end{equation*}
$$

- [Broadbridge '89] Exact solvability of (2) on $\{x \geqq 0\} \times\{t \geqq 0\}$ with $v(x, 0) \equiv 0, v_{x}(0, t) \equiv \beta$.
- [Ogasawara '03 (J. Phys. Soc. Jpn.)] Generalized model under a temperature gradient. Existence of stationary solutions.
- [Alber-Zhu ' 07] Solvability of (2) on $\{a \leqq x \leqq b\} \times(0, \infty)$ and asymptotics. Weak, strong and classical solutions.
- [Nara-Taniguchi '07] Let v and w be, resp., solutions to (2) and (3) in $\mathbf{R} \times(0, \infty)$ with the same initial data. Then

$$
\sup _{\mathbf{R}}|v(\cdot, t)-w(\cdot, t)|=O(1 / \sqrt{t}) \text { as } t \rightarrow \infty .
$$

* A similar convergence result does not hold in our case.

$$
\sup _{[0, \infty)}|v(\cdot, t)-w(\cdot, t)|=\sqrt{t} \sup _{[0, \infty)}|V(\cdot)-W(\cdot)| \xrightarrow{t \rightarrow \infty} \infty
$$

$$
\text { for } v(x, t)=\sqrt{t} V(x / \sqrt{t}) \text { and } w(x, t) \underset{6}{=} \sqrt{t} W(x / \sqrt{t}) \text { such that } v \not \equiv w \text {. }
$$

2 Neumann boundary problems

Let $F: \mathbf{R}^{n} \times \mathbf{S}^{n} \rightarrow \mathbf{R}$ be continuous \& degenerate elliptic.

$$
(\mathrm{NP}) \begin{cases}u_{t}(x, t)=F\left(\nabla_{x} u(x, t), \nabla_{x}^{2} u(x, t)\right) & \text { in }\left\{x_{1}>0\right\} \times(0, \infty), \\ u(x, 0)=u_{0}(x) \in B U C & \text { on }\left\{x_{1} \geqq 0\right\} \\ u_{x_{1}}(x, t)=\beta>0 & \text { on }\left\{x_{1}=0\right\} \times(0, \infty)\end{cases}
$$

Theorem. (NP) $=\left(\mathrm{NP} ; F, u_{0}\right)$ admits a unique viscosity solution which is bounded on $\left\{x_{1} \geqq 0\right\} \times[0, \forall T)$.

* The boundary condition is interpreted as the viscosity sense.
cf. (Neumann problems and viscosity sol.)
- [Lions '85] pioneer.
- [Bares '99], [Ishii-Sato '04] general singular 2nd order eq. $\}$ domain
- [Jato '96] half space, capillary boundary condition: $u_{x_{1}}-k|\nabla u|=0$.

3 Asymptotic behavior

$$
u_{t}(x, t)=F\left(\nabla_{x} u(x, t), \nabla_{x}^{2} u(x, t)\right)
$$

Mullins' case. ($n=1$)

$$
G_{M}(p, X)=\sqrt{1+p^{2}}\left(1-e^{-X /{\sqrt{1+p^{2}}}^{3}}\right), \quad F_{M}(p, X)=\frac{X}{1+p^{2}} .
$$

Definition (Homogeneity). $\quad F, G: \mathbf{R}^{n} \times \mathbf{S}^{n} \rightarrow \mathbf{R}$.

- F : homogeneous (hom.)
$\stackrel{\text { def }}{\Longleftrightarrow} \lambda F(p, X / \lambda)=F(p, X), \forall \lambda>0$.
- G : asymptotically homogeneous (a-hom.) $\stackrel{\text { def. }}{\Longleftrightarrow} \exists \tilde{F}$: hom., $\lambda G(p, X / \lambda) \xrightarrow{\lambda \rightarrow \infty} \tilde{F}(p, X)$ loc. unif. in $\mathbf{R}^{n} \times \mathbf{S}^{n}$.
* G_{M} is a-hom. with the limit F_{M}.
* Generalized Mullins' 1st approx.

$$
G \approx F
$$

Theorem (Asymptotic convergence).

Assume G is a-hom. with the limit F.
Let u solve (NP; G, u_{0}), v solve (NP; $F, 0$) (self-similar). Then

$$
u_{(\lambda)}(x, t):=\frac{1}{\lambda} u\left(\lambda x, \lambda^{2} t\right) \xrightarrow{\lambda \rightarrow \infty} v(x, t)
$$

locally uniformly on $\left\{x_{1} \geqq 0\right\} \times[0, \infty)$.

Remark. The limit is common to all initial data.

(V is the profile function of v.)

Proof. $\quad\left(u\right.$ solves (NP; $\left.G, u_{0}\right), v$ solves (NP; $\left.F, 0\right)$.)
1.

$$
\star u_{(\lambda)} \text { is a solution of (NP; } \underbrace{\lambda G(p, X / \lambda)}_{\rightarrow F}, \underbrace{\left.u_{0}(\lambda x) / \lambda\right)}_{\rightarrow 0} \text {. }
$$

Thus $u_{(\lambda)} \rightarrow v$ as $\lambda \rightarrow \infty$ if the limit of $u_{(\lambda)}$ exists.

We employ the viscosity solution theory to show $u_{(\lambda)} \rightarrow v$.

Relaxed limits:

$$
\begin{cases}\bar{u}:=\limsup _{\lambda \rightarrow \infty}^{*} u_{(\lambda)} & \text { is a subsol. of (NP; } F, 0), \\ \underline{u}:=\liminf _{* \lambda \rightarrow \infty} u_{(\lambda)} & \text { is a supersol. of }(\mathrm{NP} ; F, 0) .\end{cases}
$$

These limits exist if $\left\{u_{(\lambda)}\right\}_{\lambda}$ is locally uniformly bounded. Then

$$
\bar{u} \geqq \underline{u} \quad \text { by definition, } \bar{u} \leqq \underline{u} \quad \text { by comparison principle. }
$$

Thus $\bar{u}=\underline{u}=v$, which also implies the locally uniform convergence.
2. We construct barriers $\Phi^{ \pm}$such that

$$
\Phi^{-} \leqq u \leqq \Phi^{+} \quad \& \quad\left\{\Phi_{(\lambda)}^{ \pm}\right\}_{\lambda} \text { are locally bounded. }
$$

Φ^{-}We define $\Phi^{-}(x, t):=-C+w\left(x_{1}, t\right)-g(t)$, where $C \gg 1, w$ is a solution of the heat equation and

$$
g^{\prime}(t)=\sup _{|\theta|,|\sigma| \leq 1}\left|G\left(\theta \beta e_{1}, \frac{\sigma}{\sqrt{t}} I_{1,1}\right)\right| \quad(t>1) .
$$

- (A) Φ^{-}is a subsolution. $\left(\Longrightarrow \Phi^{-} \leqq u\right.$.)

Since $w_{t} \leqq 0,0 \leqq w_{x_{1}} \leqq \beta$ and $-1 / \sqrt{t} \leqq w_{x_{1} x_{1}} \leqq 0$, we see

$$
g^{\prime}(t) \geqq-G\left(\left(w_{x_{1}}\right) e_{1},\left(w_{x_{1} x_{1}}\right) I_{1,1}\right)+w_{t}
$$

- (B) $g(t)=O(\sqrt{t})$ as $t \rightarrow \infty$. $\left(\Longrightarrow\left\{\Phi_{(\lambda)}^{-}\right\}_{\lambda}\right.$ is locally bounded.) If G is hom., $g^{\prime}(t)=($ const.) $/ \sqrt{t}$. Thus $g(t)=O(\sqrt{t})$. General cases:

$$
\sqrt{t} g^{\prime}(t) \leqq \underbrace{\sup \left|\sqrt{t} G\left(\cdot, \frac{\cdot}{\sqrt{t}}\right)-F\right|}_{\rightarrow 0}+\underbrace{\sup |F|}_{=\text {const. }} \leqq \text { const. }
$$

Remark. If G is hom., then
$u_{(\lambda)} \xrightarrow{\lambda \rightarrow \infty} v \xrightarrow{ }$ uniformly on $\bar{\Omega} \times[0, \infty)$.
$\left(u\right.$ solves $\left(\mathrm{NP} ; G \equiv F, u_{0}\right), v$ solves (NP; $\left.F, 0\right)$.)
(\because) Contraction property:

$$
\begin{gathered}
u_{01}, u_{02} \in B U C(\bar{\Omega}) \text {, two initial data, } \\
\left.u_{1}: \text { sol. of }\left(\mathrm{NP} ; F, u_{01}\right) \& u_{2} \text { : sol. of (NP; } F, u_{02}\right) . \\
\Longrightarrow\left\|u_{1}-u_{2}\right\|_{L^{\infty}(\bar{\Omega} \times[0, \infty))} \leqq\left\|u_{01}-u_{02}\right\|_{L^{\infty}(\bar{\Omega})}
\end{gathered}
$$

Letting $\left(u_{1}, u_{01}\right)=\left(u_{(\lambda)}, u_{0}(\lambda x) / \lambda\right)$ and $\left(u_{2}, u_{02}\right)=(v, 0)$, we see

$$
\left\|u_{(\lambda)}-v\right\|_{L^{\infty}} \leqq\left\|u_{0}(\lambda x) / \lambda-0\right\|_{L^{\infty}}=\frac{1}{\lambda}\left\|u_{0}\right\|_{L^{\infty}} \xrightarrow{\lambda \rightarrow \infty} 0 .
$$

Asymptotics of solutions to curvature flow type eq.

Neumann type conditions.

- [Huisken '89] Convergence to a constant, zero Neumann.
- [Altschuler-Wu '93] 1-dim, quasilinear, non-zero Neumann.
[Altschuler-Wu '94] 2-dim, curvature flow, non-zero Neumann.
- [Ishimura '95] Opening angle: $u_{x}(-\infty)=-K_{2}, u_{x}(\infty)=K_{1}$.
- [Deckelnick-Elliott-Richardson '97] 1-dim half-space, Driving force.
- [Kohsaka '01], [Chang-Guo-Kohsaka '03] Free boundary, quasilinear.

Others.

- [Ecker-Huisken '89] Entire graphs.
- [Ishii-Pires-Souganidis '99] Level set.
- [Chen-Guo '07], [Schnürer-Schulze '07] Triple junction.

4 Depth of the groove

Let $n=1$. The profile function V satisfies

$$
(\mathrm{ODE})\left\{\begin{array}{l}
V(\xi)-\xi V^{\prime}(\xi)=\underline{\underline{a\left(V^{\prime}(\xi)\right)}} V^{\prime \prime}(\xi) \quad \text { in }(0, \infty) \\
V^{\prime}(0)=\beta>0 \\
\lim _{\xi \rightarrow \infty} V(\xi)=0
\end{array}\right.
$$

where $a(p):=-2 F(p,-1)$. (F is homogeneous.) We also consider

$$
\begin{aligned}
& (\mathrm{LODE})\left\{\begin{array}{l}
W(\xi)-\xi W^{\prime}(\xi)=\underline{a(0)} W^{\prime \prime}(\xi) \\
W^{\prime}(0)=\beta>0, \\
\lim _{\xi \rightarrow \infty} W(\xi)=0 .
\end{array}\right. \\
& :=-V(0) \text { and } L(\beta):=-W(0) . \\
& \quad a\left(V^{\prime}(\xi)\right) \approx a(0)
\end{aligned}
$$

Numerical result. Mullins' case, i.e., $a(p):=\frac{2}{1+p^{2}}$.

$$
v_{t}=\frac{v_{x x}}{1+v_{x}^{2}} \xrightarrow{\text { depth }} d(\beta)=-v(0,1), w_{t}=w_{x x} \xrightarrow{\text { depth }} L(\beta)=-w(0,1) .
$$

[Yamazaki, '11, graduation research]
\triangleright Is $L(\beta)$ a linear approximation of $d(\beta)$ at $\beta=0$?
$\triangleright d(\beta) \leqq L(\beta)$? Is $d(\beta)$ increasing, concave?
\triangleright Does $d(\beta)$ go to $+\infty$?

Theorem (Depth of the groove).
Assume $0 \leqq a(p) \leqq a(0)(\forall p \geqq 0)$. Then
(1) $0 \leqq \frac{L(\beta)-d(\beta)}{\beta} \leqq{ }^{\exists} C\left(a(0)-\min _{[0, \beta]} a\right)$.

We also have
(2) d is nondecreasing in $(0, \infty)$.
(3) $\lambda d(\beta) \leqq d(\lambda \beta)(\forall \lambda \in[0,1])$ if a is nonincreasing.
(4) $\lim _{\beta \rightarrow \infty} d(\beta)=+\infty$ if $a(p) \geqq \frac{c}{1+p^{2}}(\forall p \gg 1)$.

Mullins' case. $\quad a(p)=2 /\left(1+p^{2}\right)$.

$$
a(0)-\min _{[0, \beta]} a=2-\frac{2}{1+\beta^{2}}=\frac{2 \beta^{2}}{1+\beta^{2}}=O\left(\beta^{2}\right) \quad \text { as } \beta \rightarrow 0 .
$$

Proof. Comparison principle.

(1) $\{L(\beta)-d(\beta)\} / \beta \leqq C\left(a(0)-\min _{[0, \beta]} a\right)$. We claim

$$
d(\beta) \geqq \beta \sqrt{\frac{2 \min _{[0, \beta]} a}{\pi}} .
$$

Take $\beta_{0}>0$ such that $a\left(\beta_{0}\right)=\min _{[0, \beta]} a(>0)$. Let U solve

$$
(\mathrm{LODE}) \quad U-\xi U^{\prime}=a\left(\beta_{0}\right) U^{\prime \prime} \quad \& \quad \text { B.C. }
$$

Then, since $0 \leqq U^{\prime} \leqq \beta\left(\Longrightarrow a\left(U^{\prime}\right) \geqq a\left(\beta_{0}\right)\right)$ and $U^{\prime \prime} \leqq 0$, we see

$$
U-\xi U^{\prime}=a\left(\beta_{0}\right) U^{\prime \prime} \geqq a\left(U^{\prime}\right) U^{\prime \prime}
$$

which implies U is a supersol. of (ODE). Thus $V(\xi) \leqq U(\xi)$ by the comparison principle, and putting $\xi=0$ yields (\#). By (\#)

$$
\frac{L(\beta)-d(\beta)}{\beta} \leqq \sqrt{\frac{2 a(0)}{\pi}}-\sqrt{\frac{2 a\left(\beta_{0}\right)}{\pi}}=\sqrt{\frac{2}{\pi}} \times \frac{a(0)-a\left(\beta_{0}\right)}{\sqrt{a(0)}+\sqrt{a\left(\beta_{0}\right)}} .
$$

5 Surface diffusion equation

$$
\begin{cases}u_{t}=-\partial_{x}\left[\frac{1}{{\sqrt{1+u_{x}^{2}}}^{2}} \partial_{x}\left(\frac{u_{x x}}{{\sqrt{1+u_{x}^{2}}}^{3}}\right)\right] & \text { in }\{x>0\} \times(0, \infty),(1) \\ u(x, 0) \equiv 0 & \text { on }\{x \geqq 0\} \\ u_{x}(0, t)=\beta>0 & \text { in }(0, \infty) \\ \left.\partial_{x}\left(\frac{u_{x x}}{{\sqrt{1+u^{2}}}^{3}}\right) \right\rvert\,=0 & \text { in }(0, \infty)\end{cases}
$$

$(1) \Longleftrightarrow V_{n}=-k_{s s}$, (2) No flux condition.
\star Comparison principle (maximum principle) does not hold.

* Viscosity solution theory (n-th order, $n \geqq 3$)

Linearization. $\quad u_{x} \approx 0$. (1) $\rightsquigarrow y_{t}=-y_{x x x x},(2) \rightsquigarrow y_{x x x}(0, t)=0$.
[Martin '09] Exact solution to the linearized problem.

